
Development Environment
•ATI RenderMonkey
!IDE for development of real-time shaders
"Immediate feedback on code changes

!Requires knowledge of graphics API

http://ati.amd.com/developer/rendermonkey/

Using a Commodity GPU in an Undergraduate

Parallel Computing Course
Joshua Steinhurst

St. Mary’s College of Maryland
jsteinhurst@smcm.edu

Thorsten Scheuermann
Advanced Micro Devices, Inc.

thorsten.scheuermann@amd.com

Abstract
A modern graphics processor unit (GPU),
contains dozens of high performance floating
point processors. In raw computational
power, they far outstrip current CPUs. GPUs
have become a popular parallel platform
among researchers. After graduation, our
students are more likely to have a GPU
available than a traditional parallel machine,
yet they rarely gain experience with SIMD
machines. We have developed a short
module suitable for an undergraduate
parallel computing course with very limited
prerequisites.

Game of Life

2D Heat Distribution

Large Kernel
Filtering with

Summed Area
Table

What is a GPU?
•Programming Model
!Single Instruction Multiple Data (SIMD)
!Streaming computations

•Extremely limited communication
•Can buy >1TFLOPS for $3,000
!!48 floating point processors per chip
!A commodity market driven by gamers

Not just for video games!
•Financial modeling
•Seismic simulations
•Video compression
•Physics calculations

Course Context
•Public liberal arts college
!Shallow prerequisite tree
"Only CS 1/2 (Java with data structures)

!Limited lab resources
•Distributed and Parallel Computing
!Cover both topics in one semester
!Both theory and practice
!Java RMI
"Distributed objects
"Synchronization

!Java Threads
"Shared memory architecture
"Multi-core workstations

Module Outline
• 2 Weeks including 4 meetings
• Introductory lecture on GPU (110 minutes)
!Basic graphics terminology and pipeline
!Review of SIMD programming model
!Brief introduction to language (HLSL)

• Three labs (55 minutes)
! Interactively develop algorithm as class
! In pairs:

1. Write code in a provided framework
2. Gather performance results
3. Interpret the data focusing on

differentiating computation and
communication bottlenecks

Results
•Student outcomes
!Experience programming SIMD machine
!Excitement of using cutting edge system
!Experiments where outcome is unclear

"Performance model is complex and
involves several interrelated factors

•Reusable module developed

Future Work
•Non-graphical development environment
!Remove awkward syntax (i.e. TEXCOORD)
!Leverage emerging tools such as

"AMD’s Close To the Metal
"NVIDIA’s CUDA

•Adapt the module for
!Different institutions

"Stricter prerequisites
!Different course structures

"Dedicated parallel course
!Tighter integration with the entire course

•Develop measurable outcomes
!What learning is taking place?
!How does it compare to alternatives?

•Develop detailed labs for distribution

Interested in applying this at your school?

We are happy to provide assistance!

float4 ps_main(float2 texCoord:TEXCOORD0):COLOR {

 float numNeighbors = GetNeighborCount(texCoord);

 float myCell = tex2D(Texture0, texCoord);

 if(!bPauseSimulation) {

 if(myCell>0.0) {

 if(numNeighbors>=2.0 && numNeighbors<=3.0){

 myCell = 1.0;

 } else {

 myCell = 0.0;

 }

 } else {

 if(numNeighbors==3.0) {

 myCell = 1.0;

 }

 }

 }

 return myCell;

}

float GetAvgNeighborTemp(float2 texCoord) {

 [...]

 sum+=tex2D(Texture0, texCoord+float2(-dx, -dy));

 sum+=tex2D(Texture0, texCoord+float2(0, -dy));

 sum+=tex2D(Texture0, texCoord+float2(dx, -dy));

 sum+=tex2D(Texture0, texCoord+float2(-dx, 0));

 [...]

 return sum/8.0;

}

float4 ps_main(float2 texCoord:TEXCOORD0):COLOR {

 if(!bPauseSimulation) {

 myCell = GetAvgNeighborTemp(texCoord);

 }

 return myCell;

}

Funding and Support

Interactive Control
20482 Cells at 120 iterations/sec
ATI Radeon X1900XTX 512MB

Interactive Control
10242 Cells at 216 iterations/sec
ATI Radeon X1900XTX 512MB

Hensley et al. SIGGRAPH Sketch 2005

